

Severity Assessment Tools for Patients With Community-Acquired Pneumonia: A Rapid Review

Health Quality Ontario

November 2013

Evidence Development and Standards Branch at Health Quality Ontario

Suggested Citation

This report should be cited as follows:

Health Quality Ontario. Severity assessment tools for patients with community-acquired pneumonia: a rapid review. Toronto, Ontario; 2013 November. 27 p. Available from: <u>http://www.hqontario.ca/evidence/publications-and-ohtac-recommendations/rapid-reviews.</u>

Permission Requests

All inquiries regarding permission to reproduce any content in Health Quality Ontario reports should be directed to <u>EvidenceInfo@hqontario.ca</u>.

How to Obtain Rapid Reviews From Health Quality Ontario

All rapid reviews are freely available in PDF format at the following URL: <u>http://www.hqontario.ca/evidence/publications-and-ohtac-recommendations/rapid-reviews.</u>

Conflict of Interest Statement

All reports prepared by the Evidence Development and Standards branch at Health Quality Ontario are impartial. There are no competing interests or conflicts of interest to declare.

Rapid Review Methodology

Clinical questions are developed by the Evidence Development and Standards branch at Health Quality Ontario, in consultation with experts, end users, and/or applicants in the topic area. A systematic literature search is then conducted to identify relevant systematic reviews, health technology assessments, and meta-analyses; if none are located, the search is expanded to include randomized controlled trials and guidelines. Systematic reviews are evaluated using a rating scale developed for this purpose. If a systematic review has evaluated the included primary studies using the GRADE Working Group criteria (<u>http://www.gradeworkinggroup.org/index.htm</u>), the results are reported and the rapid review process is complete. If the systematic review has not evaluated the primary studies using GRADE, the primary studies in the systematic review are retrieved and the GRADE criteria are applied to a maximum of 2 outcomes. Because rapid reviews are completed in very short time frames, other publication types are not included. All rapid reviews are developed and finalized in consultation with experts.

About Health Quality Ontario

Health Quality Ontario is an arms-length agency of the Ontario government. It is a partner and leader in transforming Ontario's health care system so that it can deliver a better experience of care, better outcomes for Ontarians, and better value for money.

Health Quality Ontario strives to promote health care that is supported by the best available scientific evidence. The Evidence Development and Standards branch works with expert advisory panels, clinical experts, scientific collaborators, and field evaluation partners to conduct evidence-based reviews that evaluate the effectiveness and cost-effectiveness of health interventions in Ontario.

Based on the evidence provided by Evidence Development and Standards and its partners, the Ontario Health Technology Advisory Committee—a standing advisory subcommittee of the Health Quality Ontario Board—makes recommendations about the uptake, diffusion, distribution, or removal of health interventions to Ontario's Ministry of Health and Long-Term Care, clinicians, health system leaders, and policy-makers.

Health Quality Ontario's research is published as part of the *Ontario Health Technology Assessment Series*, which is indexed in MEDLINE/PubMed, Excerpta Medica/Embase, and the Centre for Reviews and Dissemination database. Corresponding Ontario Health Technology Advisory Committee recommendations and other associated reports are also published on the Health Quality Ontario website. Visit <u>http://www.hqontario.ca</u> for more information.

About Health Quality Ontario Publications

To conduct its rapid reviews, Evidence Development and Standards and its research partners review the available scientific literature, making every effort to consider all relevant national and international research; collaborate with partners across relevant government branches; consult with expert advisory panels, clinical and other external experts, and developers of health technologies; and solicit any necessary supplemental information.

In addition, Evidence Development and Standards collects and analyzes information about how a health intervention fits within current practice and existing treatment alternatives. Details about the diffusion of the intervention into current health care practices in Ontario add an important dimension to the review. Information concerning the health benefits, economic and human resources, and ethical, regulatory, social, and legal issues relating to the intervention may be included to assist in making timely and relevant decisions to optimize patient outcomes.

Disclaimer

This report was prepared by Health Quality Ontario or one of its research partners for the Ontario Health Technology Advisory Committee and was developed from analysis, interpretation, and comparison of scientific research. It also incorporates, when available, Ontario data and information provided by experts and applicants to Health Quality Ontario. It is possible that relevant scientific findings may have been reported since the completion of the review. This report is current to the date of the literature review specified in the methods section, if available. This analysis may be superseded by an updated publication on the same topic. Please check the Health Quality Ontario website for a list of all publications: http://www.hqontario.ca/evidence/publications-and-ohtac-recommendations.

Table of Contents

List of Abbreviations	5
Background	6
Objective of Analysis	
Clinical Need and Target Population	
Rapid Review	
Research Question	8
Research Methods	
Quality of Evidence	9
Results of Literature Search	
Results for Outcomes of Interest	
Limitations	
Conclusions	
Acknowledgements	14
Appendices	
Appendix 1: Literature Search Strategies	18
Appendix 2: Quality Assessment Tables	
References	

List of Abbreviations

AMSTAR	Assessment of Multiple Systematic Reviews
CAP	Community-acquired pneumonia
CRB-65	Confusion, respiratory rate, blood pressure, and age \geq 65 years
CURB-65	Confusion, urea, respiratory rate, blood pressure, and age \geq 65 years
GRADE	Grading of Recommendations Assessment, Development and Evaluation
HQO	Health Quality Ontario
ICU	Intensive care unit
PSI	Pneumonia Severity Index

Background

As legislated in Ontario's *Excellent Care for All Act*, Health Quality Ontario's mandate includes the provision of objective, evidence-informed advice about health care funding mechanisms, incentives, and opportunities to improve quality and efficiency in the health care system. As part of its Quality-Based Funding (QBF) initiative, Health Quality Ontario works with multidisciplinary expert panels (composed of leading clinicians, scientists, and administrators) to develop evidence-based practice recommendations and define episodes of care for selected disease areas or procedures. Health Quality Ontario's recommendations are intended to inform the Ministry of Health and Long-Term Care's Health System Funding Strategy.

For more information on Health Quality Ontario's Quality-Based Funding initiative, visit <u>www.hqontario.ca</u>.

Objective of Analysis

This rapid review aims to determine which severity assessment tool is the most accurate for patients with community-acquired pneumonia.

Clinical Need and Target Population

Community-acquired pneumonia (CAP) is a common cause of hospitalization and one of the leading causes of death in Canada. (1) Evidence suggests that patients with CAP are frequently over- and underestimated for their risk of complication, leading to inappropriate hospitalizations. (2) An objective scoring system that assesses the severity of pneumonia has the potential to improve the management of CAP by guiding antibiotic prescribing and by more appropriately identifying patients requiring hospitalization and admission into an intensive care unit (ICU). (3)

Three severity assessment scales are most commonly used:

- Pneumonia Severity Index (PSI) calculates a score using several parameters, including age, gender, coexisting illnesses, and physical, laboratory and radiographic findings. Based on the overall PSI score, patients are stratified into 1 of 5 risk categories, with categories IV and V being the most severe.
- CURB-65 bases its score on the level of a patient's confusion, urea nitrogen, respiratory rate, blood pressure, and age (for an overall score out of 5, with 4 to 5 being the most severe).
- CRB-65 is the same as CURB-65 except that it does not include urea nitrogen levels. (4)

These scales are frequently used in emergency departments to establish the severity of a patient's condition. However, international guidelines on the diagnosis and management of adults with CAP have inconsistent recommendations regarding which tool to use when determining hospital and ICU admission. Table 1 lists the recommendations according to various guidelines.

Table 1. Guideline Recommendations for Severity Assessment Tools to Determine ICU Admission for Patients With Community-Acquired Pneumonia

Guideline		ity Assessmer	nt Tool
	PSI	CURB-65	CRB-65
Canadian Thoracic Society (CTS) (1)	✓		
British Thoracic Society (BTS) (5)		✓	✓
Infectious Disease Society of America / American Thoracic Society (IDSA/ATS) (6)	✓	✓	
South African Pulmonology Society / Antibiotic Study Group of South Africa (SAPS/ ASGSA) (7)		*	
Dutch Working Party on Antibiotic Policy / Dutch Association of Chest Physicians (SWAB/NVALT) (8)	√	✓	√
Swedish Society of Infectious Diseases (SSID) (9)			4
European Respiratory Society / European Society for Clinical Microbiology and Infection Diseases (ERS/ESCMID) (10)			√

Abbreviations: CRB-65, confusion, respiratory rate, blood pressure, and age \geq 65 years; CURB-65, confusion, urea, respiratory rate, blood pressure, and age \geq 65 years; PSI, Pneumonia Severity Index.

It was unclear if the more comprehensive PSI scale was more accurate at predicting ICU admission than either CURB-65 or CRB-65, which are shorter and easier to implement. This rapid review was designed to answer this question.

Rapid Review

Research Question

Which severity assessment tool most accurately predicts ICU admission and mortality in patients with community-acquired pneumonia?

Research Methods

Literature Search

A literature search was performed on June 24, 2013, using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 1, 2008, until June 24, 2013. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.

Inclusion Criteria

- English-language full reports
- published between January 1, 2008, and June 24, 2013
- health technology assessments, systematic reviews, and meta-analyses
- hospitalized adult patients with CAP
- studies comparing PSI, CURB-65, and CRB-65 as severity assessment tools

Exclusion Criteria

- primary studies (randomized controlled trials [RCTs], observational studies, case series, and other primary study types)
- children (patients aged < 18 years)
- outpatients with CAP
- patients with hospital-acquired and ventilator-associated pneumonia
- studies where outcomes of interest cannot be extracted

Outcomes of Interest

- mortality
- ability to predict ICU admission

Expert Panel

In April 2013, Health Quality Ontario (HQO) struck the Expert Advisory Panel on Evidence-Based Episode of Care for Pneumonias Presenting to Hospitals. Members of the panel included physicians, nurses, allied health professionals, and personnel from the Ministry of Health and Long-Term Care.

The role of the expert advisory panel was to contextualize the evidence produced by HQO and provide advice on the appropriate clinical pathway for a patient with pneumonia in the Ontario health care setting. However, the statements, conclusions and views expressed in this report do not necessarily represent the views of panel members.

Quality of Evidence

The Assessment of Multiple Systematic Reviews (AMSTAR) measurement tool was used to assess the methodological quality of the selected systematic reviews. (11)

Details on the outcomes of interest were abstracted from the selected reviews, and primary studies were referenced as needed.

The quality of the body of evidence for each outcome was examined according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. (12) The overall quality was determined to be high, moderate, low, or very low using a step-wise, structural method.

Study design was the first consideration; the starting assumption was that randomized controlled trials (RCTs) are high quality, whereas observational studies are low quality. Five additional factors—risk of bias, inconsistency, indirectness, imprecision, and publication bias—were then taken into account. Limitations in these areas resulted in downgrading the quality of evidence. Finally, 3 main factors that may raise the quality of evidence were considered: large magnitude of effect, dose-response gradient, and accounting for all residual confounding factors. (12) For more detailed information, please refer to the latest series of GRADE articles. (12)

As stated by the GRADE Working Group, the final quality score can be interpreted using the following definitions:

High	High confidence in the effect estimate—the true effect lies close to the estimate of the effect
Moderate	Moderate confidence in the effect estimate—the true effect is likely to be close to the estimate of the effect, but may be substantially different
Low	Low confidence in the effect estimate—the true effect may be substantially different from the estimate of the effect
Very Low	Very low confidence in the effect estimate—the true effect is likely to be substantially different from the estimate of effect

Results of Literature Search

The database search yielded 62 citations published between January 1, 2008, and June 24, 2013 (with duplicates removed). Articles were excluded on the basis of information in the title and abstract. The full texts of potentially relevant articles were obtained for further assessment.

Three articles were identified that met the inclusion criteria. (2;3;13) A systematic review and metaanalysis by Chalmers et al published in 2011 assessed the outcome of ICU admission (3). Loke et al (13) and Chalmers et al (2) each published systematic reviews and meta-analyses in 2010 that assessed the outcome of mortality.

On assessment using the AMSTAR tool, the two systematic reviews by Chalmers et al (3) on ICU admission and mortality each received a score of 9 and the systematic review by Loke et al (13) on mortality received a score of 8. (Appendix 2, Table A1). The systematic reviews are summarized in Table 2.

Author, Year	Search Dates	Inclusion Criteria	Outcomes Studied	Number of Studies	AMSTAR Score ^a
Chalmers et al, 2011 (3)	January 1980 to October 2010	English-language only Patients with radiographic confirmation of CAP Patients presenting to the hospital with CAP (no outpatients included)	ICU admission	PSI: 28 CURB-65: 12 CRB-65: 4	9
Chalmers et al, 2010 (2)	January 1980 to August 2009	English-language only Patients with radiographic confirmation of CAP	Mortality	PSI: 31 CURB-65: 17 CRB-65: 11	9
Loke et al, 2010 (13)	January 1999 to October 2009	English-language only At least 100 participants Prospective studies Patients with confirmed diagnosis of CAP	Mortality	PSI: 16 CURB-65: 12 CRB-65: 10	8

Table 2. Summary of Included Systematic Reviews

Abbreviations: AMSTAR, Assessment of Multiple Systematic Reviews; CAP, community-acquired pneumonia; CRB-65, confusion, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https://www.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https://wwww.espiratory-acquired-pneumonia; CRB-65, confusion, urea, respiratory rate, blood pressure, and age https:

Results for Outcomes of Interest

The systematic review by Chalmers et al (3) reports on how well PSI, CURB-65 and CRB-65 predict ICU admission, and the systematic reviews by Loke et al (13) and Chalmers et al (2) report on how well the three severity assessment scores identify patients at risk of death. None of these articles provides the GRADE level of evidence; therefore, their included individual studies were reviewed and the GRADE for each outcome was assessed.

Prediction of ICU Admission

Chalmers et al (3) identified 26 studies that evaluated the sensitivity and specificity of the PSI score for predicting ICU admission using the PSI score, 12 studies that used CURB-65, and 4 studies using CRB-

65. Based on these studies, the authors conducted a meta-analysis for the severity assessment tools (Table 3). The meta-analysis found that for the prediction of ICU admission, PSI has higher sensitivity but lower specificity than either CURB-65 or CRB-65. The diagnostic odds ratio was highest for CRB-65: however, all of the ratios were greater than 1.0, indicating that all the assessment scales have some utility for the prediction of ICU admission.

The quality assessment of evidence for this outcome was conducted based on details published in the systematic review by Chalmers et al (3). A number of sources of risk of bias were identified; most notably only 2 of the 30 studies clearly stated the criteria for ICU admission. As well, the mean age in the studies varied largely, from 59 to 78 years. Finally, all studies were observational, with no RCTs available. As a result, the effect estimate for the outcome of ICU admission is based on very low GRADE quality of evidence (Appendix 2, Table A2 and Table A3).

	Severity Assessment Scale		
	PSI (26 studies)	CURB-65 (11 studies)	CRB-65 (4 studies)
Pooled number of patients	25,609	11,602	3,096
Pooled number of patients admitted to ICU ^a	2,410	1,149	271
Pooled sensitivity (95% CI)	74.1% (72.3–75.8)	48.8% (45.9–51.7)	41.7% (35.8–47.8)
Pooled specificity (95% CI)	47.9% (47.3–48.6)	74.0% (73.2–74.9)	85.1% (83.8–86.4)
Diagnostic odds ratio (95% CI)	2.83 (2.34–3.42)	2.40 (1.63–3.53)	5.72 (3.79–8.63)

Abbreviations: CRB-65, confusion, respiratory rate, blood pressure, and age \geq 65 years; CURB-65, confusion, urea, respiratory rate, blood pressure, and age \geq 65 years; ICU, intensive care unit; PSI, Pneumonia Severity Index.

a The cut-off for admission to ICU was \geq IV for PSI, \geq 3 for CURB-65, and \geq 3 for CRB-65.

Source: Chalmers et al, 2011. (3)

Prediction of Mortality

The 2 systematic reviews that assessed the tools' ability to predict risk of death found consistent results (Table 4). They found that PSI had the highest sensitivity compared to CURB-65 and CRB-65, and that CRB-65 had the highest specificity compared to PSI and CURB-65. The diagnostic odds ratios were also relatively consistent across both systematic reviews. PSI had the highest diagnostic odds ratio, followed by CURB-65 and then CRB-65. All of the pooled diagnostic odds ratios were well over 1.0, suggesting that each tool can predict the risk of death.

Assessment of the quality of evidence was conducted based on details published in the systematic reviews by Loke et al (13) and Chalmers et al. (2) The authors state that there is considerable heterogeneity in the populations from the different studies, as well as differences in microbiological spectrum and antibiotic sensitivity. As a result of these limitations, the effect estimate for the outcome of mortality is based on very low GRADE quality of evidence (Appendix 2, Table A2 and Table A3).

		Severity Assessment Scale		
Author, Year		PSI	CURB-65	CRB-65
Chalmers et al, 2010 (2)	Pooled number of patients ^a (number of studies)	81,797 (31)	15,596 (17)	397,211 (11)
	Pooled sensitivity (95% CI)	91.4% (90.8–92.1)	62.0% (59.3–64.6)	29.1% (28.8–29.5)
	Pooled specificity (95% CI)	49.5% (49.2–49.9)	80.8% (80.2–81.4)	90.9% (90.8–91.0)
	Diagnostic odds ratio (95% CI)	9.6 (8.0–11.6)	7.0 (5.8–8.3)	6.9 (4.9–9.5)
Loke et al, 2010 (13)	Pooled number of patients ^a (number of studies)	16,519 (16)	11,199 (12)	8,143 (10)
	Pooled sensitivity (95% CI)	90% (87–92)	62% (54–70)	33% (24–44)
	Pooled specificity (95% CI)	53% (46–59)	79% (75–83)	92% (86–96)
	Diagnostic odds ratio (95% CI)	10.8 (8.3–14.0)	6.4 (5.1–8.1)	6.0 (3.4–10.4)

Table 4. Results of Meta-Analyses for Prediction of Risk of Death Using PSI, CURB-65, and CRB-65 for High-Risk Patients

Abbreviations: CRB-65, confusion, respiratory rate, blood pressure, and age \geq 65 years; CURB-65, confusion, urea, respiratory rate, blood pressure, and age \geq 65 years; ICU, intensive care unit; PSI, Pneumonia Severity Index. ^aThe cut-off for high risk (defined as requiring admission to ICU) was \geq IV for PSI, \geq 3 for CURB-65, an \geq 3 for CRB-65.

Limitations

There is significant heterogeneity in the inclusion and exclusion criteria applied in the individual studies included in the systematic reviews, resulting in very large heterogeneity in the pooled results. For the outcome of mortality, many studies in the meta-analysis do not have any deaths, and the low sample size of deaths may impact the validity of the summary statistic.

Conclusions

Based on **very low** quality of evidence, the systematic reviews evaluating the performance of PSI, CURB-65 and CRB-65 as severity assessment tools for patients with community-acquired pneumonia reached the following conclusions:

- The diagnostic odds ratios for the prediction of ICU admission and prediction of death are not significantly different between PSI, CURB-65, and CRB-65.
- PSI had a higher sensitivity and lower specificity compared to both CURB-65 and CRB-65 for the prediction of ICU admission and prediction of death.

Acknowledgements

Editorial Staff

Amy Zierler

Medical Information Services

Corinne Holubowich, BEd, MLIS Kellee Kaulback, BA(H), MISt

HQO's Expert Advisory Panel on Evidence-Based Episode of Care for Pneumonias Presenting to Hospitals

Panel Members	Affiliation(s)	Appointment(s)
Co-Chairs		
Dr Andrew Morris	Mount Sinai Hospital University Health Network University of Toronto	Medical Director, MSH-UHN Antimicrobial Stewardship Program Associate Professor, Division of Infectious Diseases
Dr Howard Ovens	Mount Sinai Hospital University of Toronto	Director, Schwartz-Reisman Emergency Centre Associate Professor, Department of Family and Community Medicine
Respirologist		
Dr Meyer Balter	University of Toronto Mount Sinai Hospital	Professor of Medicine Director, Asthma and COPD Education Clinic
Dr Gerard Cox	St. Joseph's Healthcare Hamilton McMaster University	Head of the Division of Respirology
Dr David Fishbein	Humber River Hospital	Chief of the Department of Medicine, Division of Respirology
Dr Kevin Sanders	North York General Hospital Sunnybrook Health Sciences	Respirologist, Intensive Care Unit, Critical Care Response Team
Intensivist		
Dr Christine Bradley	Hamilton General Hospital McMaster University	Associate Clinical Professor
Dr Niall Ferguson	Mount Sinai Hospital University of Toronto	Director of Critical Care
Dr Cindy Hamielec	McMaster University Hamilton General Hospital	Associate Clinical Professor Past National Chair at Canadian Intensive Care Foundation
Dr Michael Miletin	William Osler Health Centre	Director of Critical Care
Dr John Muscedere	Kingston General Hospital Queen's University	Research Director, Clinical Care Program
Dr Mark Soth	McMaster University St. Joseph's Healthcare Hamilton	Associate Professor Chief, Department of Critical Care

Panel Members	Affiliation(s)	Appointment(s)
Infectious Disease Spec	cialist	
Dr Gary Garber	Ontario Agency for Health Protection and Promotion The Ottawa Hospital Research Institute	Medical Director Infection Prevention and Control
Dr Wayne Gold	Toronto General Hospital University of Toronto	Director of Adult Infectious Diseases Program
Dr Jeff Powis	Toronto East General Hospital University of Toronto	Director of Antimicrobial Stewardship Program
Dr Dan Ricciuto	Lakeridge Health	Physician Lead, IPAC and Antimicrobial Stewardship
Infectious Disease Spec	cialist/Medical Microbiologist	
Dr William Ciccotelli	Grand River Hospital St. Mary's General Hospital	Medical Director Infection Prevention and Control Physician Lead – Antimicrobial Stewardship Program
Medical Microbiologist		
Jonathan Gubbay	Ontario Agency for Health Protection and Promotion University of Toronto The Hospital for Sick Children	Medical Microbiologist and Paediatric Infectious Disease Specialist
Emergency Medicine Sp	pecialist	
Dr Gary Mann	Central East LHIN Rouge Valley Health Centre	Central East LHIN/Provincial LHIN Lead Program Chief, Dept. of Emergency Medicine
Dr Shaun Visser	University of Ottawa	Champlain ED LHIN Lead and Medical Director Emergency Department, Montfort Hospital
Family Medicine		
Dr Kenneth Hook	Ontario College of Family Physicians STAR Family Health Team	Past-President Senior Physician
Dr John Jordan	Byron Family Medical Centre Western University	Professor of Family Medicine
Dr Frank Martino	William Osler Health Centre McMaster University Ontario College of Family Physicians	Lead Physician President, OCFP
Hospitalist		
Dr Robert Maloney	Sault Area Hospital	Chief Hospitalist
Dr Cary Shafir	Guelph General Hospital	Chief Hospitalist
Dr Warren Wilkins	Peterborough Regional Health Centre	Medical Director, Internal Medicine Program Acting Lead Hospitalist
Hospitalist/Geriatrician		
Dr Mireille Norris	Sunnybrook Health Sciences	Education Director of Hospitalist Training Program

Panel Members	Affiliation(s)	Appointment(s)
Geriatrician		
Dr Anthony Kerigan	Hamilton Health Sciences	Geriatrician
Clinical Pharmacist		
Anne Marie Bombassaro, PharmD	London Health Sciences Centre	Pharmacy Practice Leader
Mark McIntyre, PharmD	Mount Sinai Hospital	Clinical Pharmacist
Pharmacotherapy Special	ist	
Miranda So, PharmD	University Health Network Mount Sinai Antimicrobial Stewardship Program	Pharmacotherapy Specialist
Antimicrobial Pharmacy S	specialist	
Rosemary Zvonar	The Ottawa Hospital	Antimicrobial Pharmacy Specialist
Senior Hospital Administr	ator	
Jocelyn Bennett	Mount Sinai Hospital	Senior Director for Urgent and Critical Care
Registered Nurse		
Fran Izon	Mississauga Halton CCAC	Client Services Manager
Donna Johnson	St. Joseph's Healthcare Hamilton	Director, Clinical Programs
Registered Nurse (Emerge	ency)	
Licina Simoes	Toronto Western Hospital (UHN)	Registered Nurse (Emergency)
Registered Nurse Educate	or (Emergency)	
Susan Harper	Peterborough Regional Health Centre	Registered Nurse Educator (Emergency)
Nurse Practitioner		
Cheryl Lennox	South West Community CCAC, Intensive Home Care Team	Nurse Practitioner-Primary Health Care Certified Respiratory Educator
Registered Respiratory Th	nerapist	
Carole Madeley	Ontario Lung Association	Certified Respiratory Educator Director of Respiratory Health Programs
Charge Respiratory Thera	pist	
Vagia T. Campbell	Mount Sinai Hospital	Charge Respiratory Therapist, Urgent & Critical Care
Physiotherapist		
Cathy Relf	Trillium Health Partners – Mississauga Hospital	Physiotherapist
Intensive Care Physiother	apist	
Tania Larsen	London Health Sciences	Intensive Care Physiotherapist
Decision Support and Cas	se Costing Specialist	

Panel Members	Affiliation(s)	Appointment(s)
Linda Welham	Southlake Regional Health Centre	Decision Support and Case Costing Specialist

Appendices

Appendix 1: Literature Search Strategies

Search date: June 24, 2013

Databases searched: Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase; Ovid All EBM Reviews

Q: Which CAP severity assessment tool has the highest accuracy for predicting ICU admission and mortality?

Limits: 2008-current; English

Filters: Meta-analyses, systematic reviews, health technology assessments

Database: EBM Reviews - Cochrane Database of Systematic Reviews <2005 to May 2013>, EBM Reviews - ACP Journal Club <1991 to May 2013>, EBM Reviews - Database of Abstracts of Reviews of Effects <2nd Quarter 2013>, EBM Reviews - Cochrane Central Register of Controlled Trials <May 2013>, EBM Reviews - Cochrane Methodology Register <3rd Quarter 2012>, EBM Reviews - Health Technology Assessment <2nd Quarter 2013>, EBM Reviews - NHS Economic Evaluation Database <2nd Quarter 2013>, Embase <1980 to 2013 Week 25>, Ovid MEDLINE(R) <1946 to June Week 2 2013>, Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations <June 21, 2013>

Sea	arch Strategy:	
#	Searches	Results
1	exp Pneumonia/	251440
2	(pneumoni* or peripneumoni* or pleuropneumoni* or lobitis or ((pulmon* or lung*) adj inflammation*)).ti,ab.	297852
3	or/1-2	411044
4	exp "Severity of Illness Index"/ use mesz,acp,cctr,coch,clcmr,dare,clhta,cleed	174962
5	exp pneumonia severity index/ use emez	356
6	(pneumonia severity index or PSI or CURB-65 or CRB-65).ti,ab.	21119
7	(severity adj2 (scale* or index* or indice* or tool* or assessment*or evaluation*)).ti,ab.	24674
8	or/4-7	215185
9	3 and 8	4712
10	limit 9 to (english language and yr="2008 -Current") [Limit not valid in CDSR,ACP Journal Club,DARE,CCTR,CLCMR; records were retained]	2243
11	Meta Analysis.pt.	43474
12	Meta-Analysis/ use mesz or exp Technology Assessment, Biomedical/ use mesz	51972
13	Meta Analysis/ use emez or Biomedical Technology Assessment/ use emez	83182
14	(meta analy* or metaanaly* or pooled analysis or (systematic* adj2 review*) or published studies or published literature or medline or embase or data synthesis or data extraction or cochrane).ti,ab.	362020
15	((health technolog* or biomedical technolog*) adj2 assess*).ti,ab.	4816
16	or/11-15	414598
17	10 and 16	70
18	remove duplicates from 17	57

CINAHL

#	Query	Results
S13	S9 AND S12	22
S12	S10 OR S11	Display
S11	((health technology N2 assess*) or meta analy* or metaanaly* or pooled analysis or (systematic* N2 review*) or published studies or medline or embase or data synthesis or data extraction or cochrane)	Display
S10	(MH "Meta Analysis") or (MH "Systematic Review")	Display
S9	S3 AND S7 Limiters - Published Date from: 20080101-20131231; English Language	629
S8	S3 AND S7	1,117
S7	S4 OR S5 OR S6	39,200
S6	severity N2 (scale* or index* or indice* or tool* or assessment*or evaluation*)	36,647
S5	pneumonia severity index or PSI or CURB-65 or CRB-65	516
S4	(MH "Severity of Illness Indices+")	32,296
S3	S1 OR S2	18,548
S2	(pneumoni* or peripneumoni* or pleuropneumoni* or lobitis or ((pulmon* or lung*) N1 inflammation*))	18,487
S1	(MH "Pneumonia+")	11,193

Appendix 2: Quality Assessment Tables

Author, Year	AMSTAR Scoreª	(1) Provided Study Design	(2) Duplicate Study Selection	(3) Broad Literatur e Search	(4) Considere d Status of Publication	(5) Listed Exclude d Studies	(6) Provided Characteristics of Studies	(7) Assessed Scientific Quality	(8) Considered Quality in Report	(9) Methods to Combine Appropriat e	(10) Assessed Publication Bias	(11) Stated Conflict of Interest
Chalmers et al, 2011 (3)	9	\checkmark	~	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		✓
Chalmers et al, 2010 (2)	9	\checkmark	~	✓	\checkmark		\checkmark	\checkmark	~	\checkmark		~
Loke et al, 2010 (13)	8	\checkmark	~	✓	\checkmark		\checkmark		~	\checkmark		~

Table A1: AMSTAR Scores of Included Systematic Reviews

Abbreviations: AMSTAR, Assessment of Multiple Systematic Reviews

^a Maximum possible score is 11. Details of AMSTAR method are described in Shea et al. (11)

Table A2: Risk of Bias Among Studies Included in Systematic Reviews Comparing Severity Assessment Tools for Patients with Community-Acquired Pneumonia

Author, Year	Allocation Concealment	Blinding	Complete Accounting of Patients and Outcome Events	Selective Reporting Bias	Other Limitations
Ewig et al, 2004 (14)	Very serious limitations ^a	Very serious limitations ^a	Serious limitations ^c	No serious limitations	Serious limitations ^b
Feagan et al, 2000 (15)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Lim et al, 2003 (16)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Roson et al, 2001 (17)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Angus et al, 2002 (18)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Capelaslegui et al, 2006 (19)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Lamy et al, 2004 (20)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Riley et al, 2004 (21)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
van der Eerden et al, 2004 (22)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b
Aujesky et al, 2005 (23)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b
Gutierrez et al, 2005 (24)	Very serious limitations ^a	Very serious limitations ^a	Serious limitations ^c	No serious limitations	No serious limitations
Spindler et al, 2006 (25)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Migliorati et al, 2006 (26)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Myint et al, 2006 (27)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b

Barlow et al, 2007 (28)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Buising et al, 2007 (29)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Man et al, 2007 (30)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Etzion et al, 2007 (31)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b
Marrie et al, 2007 (32)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Renaud et al, 2007a (33)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b
Renaud et al, 2007b (34)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Reyes-Calzada et al, 2007 (35)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Chalmers et al, 2008 (36)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Charles et al, 2008 (37)	Very serious limitations ^a	Very serious limitations ^a	Serious limitations ^c	No serious limitations	Serious limitations ^b
Restrepo et al, 2008 (38)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Garau et al, 2008 (39)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Ananda-Rajah et al, 2008 (40)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Johnstone et al, 2008 (41)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Schuetz et al, 2008 (42)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Zuberi et al, 2008 (43)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Yandiola et al, 2009 (44)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Liapikou et al, 2009 (45)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Feldman et al, 2009 (46)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Kontou et al, 2009 (47)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Phua et al, 2009 (48)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Brown et al, 2009 (49)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	No serious limitations
Menendez et al, 2009 (50)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b
Myint et al, 2009 (51)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b
Pilotto et al, 2009 (52)	Very serious limitations ^a	Very serious limitations ^a	No serious limitations	No serious limitations	Serious limitations ^b

^a Due to the nature of the research question, blinding was not possible in the studies.
 ^bTreatment regimen was not mentioned in the study's methods.
 ^cAuthors failed to provide information on follow-up and outcome ascertainment.
 Source: All studies included in the systematic reviews by Chalmers et al, 2011 (3) and Loke et al, 2010 (13).

Table A3: GRADE Evidence Profile for Comparison of CAP Severity Assessment Tools

Number of Studies (Design)	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Upgrade Considerations	Quality
PSI for prediction o	f ICU admission						
28 (Observational)	Very serious limitations (-2) ^a	No serious limitations	No serious limitations	No serious limitations	Undetected	None	\oplus Very low
CURB-65 for predic	tion of ICU admissio	n					
12 (Observational)	Very serious limitations (-2) ^a	No serious limitations	No serious limitations	No serious limitations	Undetected	None	\oplus Very low
CRB-65 for prediction	on of ICU admission						
4 (Observational)	Very serious limitations (-2) ^a	No serious limitations	No serious limitations	No serious limitations	Undetected	None	\oplus Very low
PSI for prediction o	f risk of death						
16 (Observational)	Very serious limitations (-2) ^a	No serious limitations	No serious limitations	Serious limitations ^b	Undetected	None	⊕Very low
CURB-65 for predic	tion of risk of death						
12 (Observational)	Very serious limitations (-2) ^a	No serious limitations	No serious limitations	Serious limitations ^b	Undetected	None	⊕Very low
CURB-65 for predic	tion of risk of death						
10 (Observational)	Very serious limitations (-2) ^a	No serious limitations	No serious limitations	Serious limitations ^b	Undetected	None	⊕Very low

Abbreviations: CAP, community-acquired pneumonia; CRB, confusion, respiratory rate, blood pressure, and age > 65; CURB-65, confusion, urea, respiratory rate, blood pressure, and age > 65; GRADE, Grading of Recommendations Assessment, Development and Evaluation; ICU, intensive care unit; PSI, pneumonia severity index.

^aAll studies are observational, leading to no allocation concealment, blinding, or adequate sequence generation.

^bSeveral studies had zero deaths, leading to potentially misleading summary statistics.

References

- (1) Mandell LA, Marrie TJ, Grossman RF, Chow AW, Hyland RH. Summary of Canadian guidelines for the initial management of community-acquired pneumonia: an evidence-based update by the Canadian Infectious Disease Society and the Canadian Thoracic Society. Can J Infect Dis 2000; 11(5):237-248.
- (2) Chalmers JD, Singanayagam A, Akram AR, Mandal P, Short PM, Choudhury G et al. Severity assessment tools for predicting mortality in hospitalised patients with community-acquired pneumonia. Systematic review and meta-analysis. Thorax 2010; 65(10):878-883.
- (3) Chalmers JD, Mandal P, Singanayagam A, Akram AR, Choudhury G, Short PM et al. Severity assessment tools to guide ICU admission in community-acquired pneumonia: Systematic review and meta-analysis. Intensive Care Med 2011; 37(9):1409-1420.
- (4) Ebell MH. Outpatient vs. inpatient treatment of community acquired pneumonia. Fam Pract Manag 2006; 13(4):41-44.
- (5) Harris M, Clark J, Coote N, Fletcher P, Harnden A, McKean M et al. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax 2011; 66(Suppl 2):ii1-ii23.
- (6) Moran GJ, Rothman RE, Volturo GA. Emergency management of community-acquired bacterial pneumonia: What is new since the 2007 Infectious Diseases Society of America/American Thoracic Society guidelines. Amer Journ of Emerg Med 2013; 31(3):602-612.
- (7) Management of community-acquired pneumonia in adults. Working groups of the South African Pulmonology Society and the Antibiotic Study Group of South Africa. S Afr Med J 1996; 86(9 Pt 2):1152-1163.
- (8) Wiersinga WJ, Bonten MJ, Boersma WG, Jonkers RE, Aleva RM, Kullberg BJ et al. SWAB/NVALT (Dutch Working Party on Antibiotic Policy and Dutch Association of Chest Physicians) guidelines on the management of community-acquired pneumonia in adults. Nether Journ of Med 2012; 70(2):90-101.
- (9) Hedlund J, Stralin K, Ortqvist A, Holmberg H. Swedish guidelines for the management of community-acquired pneumonia in immunocompetent adults. Scand J Infect Dis 2005; 37(11-12):791-805.
- (10) Woodhead M, Blasi F, Ewig S, Garau J, Huchon G, Ieven M et al. Guidelines for the management of adult lower respiratory tract infections. Clin Microbiol Infect 2011; 17 Suppl 6:E1-59.
- (11) Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007; 7:10.

- (12) Guyatt GH, Oxman AD, Schunemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 2011; 64(4):380-382.
- (13) Loke YK, Kwok CS, Niruban A, Myint PK. Value of severity scales in predicting mortality from community-acquired pneumonia: Systematic review and meta-analysis. Thorax 2010; 65(10):884-890.
- (14) Ewig S, de RA, Bauer T, Garcia E, Mensa J, Niederman M et al. Validation of predictive rules and indices of severity for community acquired pneumonia. Thorax 2004; 59(5):421-427.
- (15) Feagan BG, Marrie TJ, Lau CY, Wheeler SL, Wong CJ, Vandervoort MK. Treatment and outcomes of community-acquired pneumonia at Canadian hospitals. CMAJ 2000; 162(10):1415-1420.
- (16) Lim WS, van der Eerden MM, Laing R, Boersma WG, Karalus N, Town GI et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 2003; 58(5):377-382.
- (17) Roson B, Carratala J, Dorca J, Casanova A, Manresa F, Gudiol F. Etiology, reasons for hospitalization, risk classes, and outcomes of community-acquired pneumonia in patients hospitalized on the basis of conventional admission criteria. Clin Infect Dis 2001; 33(2):158-165.
- (18) Angus DC, Marrie TJ, Obrosky DS, Clermont G, Dremsizov TT, Coley C et al. Severe community-acquired pneumonia: use of intensive care services and evaluation of American and British Thoracic Society Diagnostic criteria. Am J Respir Crit Care Med 2002; 166(5):717-723.
- (19) Capelastegui A, Espana PP, Quintana JM, Areitio I, Gorordo I, Egurrola M et al. Validation of a predictive rule for the management of community-acquired pneumonia. Eur Respir J 2006; 27(1):151-157.
- (20) Lamy O, Van MG, Cornuz J, Burnand B. Clinical management of immunocompetent hospitalized patients with community-acquired pneumonia. Eur J Intern Med 2004; 15(1):28-34.
- (21) Riley PD, Aronsky D, Dean NC. Validation of the 2001 American Thoracic Society criteria for severe community-acquired pneumonia. Crit Care Med 2004; 32(12):2398-2402.
- (22) van der Eerden MM, de Graaff CS, Vlaspolder F, Bronsveld W, Jansen HM, Boersma WG. Evaluation of an algorithm for switching from IV to PO therapy in clinical practice in patients with community-acquired pneumonia. Clin Ther 2004; 26(2):294-303.
- (23) Aujesky D, Auble TE, Yealy DM, Stone RA, Obrosky DS, Meehan TP et al. Prospective comparison of three validated prediction rules for prognosis in community-acquired pneumonia. Am J Med 2005; 118(4):384-392.
- (24) Gutierrez F, Masia M, Rodriguez JC, Mirete C, Soldan B, Padilla S et al. Epidemiology of community-acquired pneumonia in adult patients at the dawn of the 21st century: a prospective study on the Mediterranean coast of Spain. Clin Microbiol Infect 2005; 11(10):788-800.
- (25) Spindler C, Ortqvist A. Prognostic score systems and community-acquired bacteraemic pneumococcal pneumonia. Eur Respir J 2006; 28(4):816-823.

- (26) Migliorati PL, Boccoli E, Bracci LS, Sestini P, Melani AS. A survey on hospitalised communityacquired pneumonia in Italy. Monaldi Arch Chest Dis 2006; 65(2):82-88.
- (27) Myint PK, Kamath AV, Vowler SL, Maisey DN, Harrison BD. Severity assessment criteria recommended by the British Thoracic Society (BTS) for community-acquired pneumonia (CAP) and older patients. Should SOAR (systolic blood pressure, oxygenation, age and respiratory rate) criteria be used in older people? A compilation study of two prospective cohorts. Age Ageing 2006; 35(3):286-291.
- (28) Barlow G, Nathwani D, Davey P. The CURB65 pneumonia severity score outperforms generic sepsis and early warning scores in predicting mortality in community-acquired pneumonia. Thorax 2007; 62(3):253-259.
- (29) Buising KL, Thursky KA, Black JF, MacGregor L, Street AC, Kennedy MP et al. Identifying severe community-acquired pneumonia in the emergency department: a simple clinical prediction tool. Emerg Med Australas 2007; 19(5):418-426.
- (30) Man SY, Lee N, Ip M, Antonio GE, Chau SS, Mak P et al. Prospective comparison of three predictive rules for assessing severity of community-acquired pneumonia in Hong Kong. Thorax 2007; 62(4):348-353.
- (31) Etzion O, Novack V, Avnon L, Porath A, Dagan E, Riesenberg K et al. Characteristics of lowrisk patients hospitalized with community-acquired pneumonia. Eur J Intern Med 2007; 18(3):209-214.
- (32) Marrie TJ, Shariatzadeh MR. Community-acquired pneumonia requiring admission to an intensive care unit: a descriptive study. Medicine (Baltimore) 2007; 86(2):103-111.
- (33) Renaud B, Coma E, Labarere J, Hayon J, Roy PM, Boureaux H et al. Routine use of the Pneumonia Severity Index for guiding the site-of-treatment decision of patients with pneumonia in the emergency department: a multicenter, prospective, observational, controlled cohort study. Clin Infect Dis 2007; 44(1):41-49.
- (34) Renaud B, Coma E, Hayon J, Gurgui M, Longo C, Blancher M et al. Investigation of the ability of the Pneumonia Severity Index to accurately predict clinically relevant outcomes: a European study. Clin Microbiol Infect 2007; 13(9):923-931.
- (35) Reyes Calzada S., Martinez Tomas R., Cremades Romero MJ, Martinez Moragon E., Soler Cataluna JJ, Menendez Villanueva R. Empiric treatment in hospitalized community-acquired pneumonia. Impact on mortality, length of stay and re-admission. Respir Med 2007; 101(9):1909-1915.
- (36) Chalmers JD, Singanayagam A, Hill AT. Predicting the need for mechanical ventilation and/or inotropic support for young adults admitted to the hospital with community-acquired pneumonia. Clin Infect Dis 2008; 47(12):1571-1574.
- (37) Charles PG, Whitby M, Fuller AJ, Stirling R, Wright AA, Korman TM et al. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin Infect Dis 2008; 46(10):1513-1521.

- (38) Restrepo MI, Bienen T, Mortensen EM, Anzueto A, Metersky ML, Escalante P et al. Evaluation of ICU admission criteria and diagnostic methods for patients with severe community-acquired pneumonia: current practice survey. Chest 2008; 133(3):828-829.
- (39) Garau J, Baquero F, Perez-Trallero E, Perez JL, Martin-Sanchez AM, Garcia-Rey C et al. Factors impacting on length of stay and mortality of community-acquired pneumonia. Clin Microbiol Infect 2008; 14(4):322-329.
- (40) Ananda-Rajah MR, Charles PG, Melvani S, Burrell LL, Johnson PD, Grayson ML. Comparing the pneumonia severity index with CURB-65 in patients admitted with community acquired pneumonia. Scand J Infect Dis 2008; 40(4):293-300.
- (41) Johnstone J, Eurich DT, Majumdar SR, Jin Y, Marrie TJ. Long-term morbidity and mortality after hospitalization with community-acquired pneumonia: a population-based cohort study. Medicine (Baltimore) 2008; 87(6):329-334.
- (42) Schuetz P, Koller M, Christ-Crain M, Steyerberg E, Stolz D, Muller C et al. Predicting mortality with pneumonia severity scores: importance of model recalibration to local settings. Epidemiol Infect 2008; 136(12):1628-1637.
- (43) Zuberi FF, Khan JA. Prospective comparison of prediction rules of mortality risk for CAP in a developing country. Int J Tuberc Lung Dis 2008; 12(4):447-452.
- (44) Yandiola PP, Capelastegui A, Quintana J, Diez R, Gorordo I, Bilbao A et al. Prospective comparison of severity scores for predicting clinically relevant outcomes for patients hospitalized with community-acquired pneumonia. Chest 2009; 135(6):1572-1579.
- (45) Liapikou A, Ferrer M, Polverino E, Balasso V, Esperatti M, Piner R et al. Severe communityacquired pneumonia: validation of the Infectious Diseases Society of America/American Thoracic Society guidelines to predict an intensive care unit admission. Clin Infect Dis 2009; 48(4):377-385.
- (46) Feldman C, Alanee S, Yu VL, Richards GA, Ortqvist A, Rello J et al. Severity of illness scoring systems in patients with bacteraemic pneumococcal pneumonia: implications for the intensive care unit care. Clin Microbiol Infect 2009; 15(9):850-857.
- (47) Kontou P, Kuti JL, Nicolau DP. Validation of the Infectious Diseases Society of America/American Thoracic Society criteria to predict severe community-acquired pneumonia caused by Streptococcus pneumoniae. Am J Emerg Med 2009; 27(8):968-974.
- (48) Phua J, See KC, Chan YH, Widjaja LS, Aung NW, Ngerng WJ et al. Validation and clinical implications of the IDSA/ATS minor criteria for severe community-acquired pneumonia. Thorax 2009; 64(7):598-603.
- (49) Brown SM, Jones BE, Jephson AR, Dean NC. Validation of the Infectious Disease Society of America/American Thoracic Society 2007 guidelines for severe community-acquired pneumonia. Crit Care Med 2009; 37(12):3010-3016.
- (50) Menendez R, Martinez R, Reyes S, Mensa J, Filella X, Marcos MA et al. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009; 64(7):587-591.

- (51) Myint PK, Sankaran P, Musonda P, Subramanian DN, Ruffell H, Smith AC et al. Performance of CURB-65 and CURB-age in community-acquired pneumonia. Int J Clin Pract 2009; 63(9):1345-1350.
- (52) Pilotto A, Addante F, Ferrucci L, Leandro G, D'Onofrio G, Corritore M et al. The multidimensional prognostic index predicts short- and long-term mortality in hospitalized geriatric patients with pneumonia. J Gerontol A Biol Sci Med Sci 2009; 64(8):880-887.

Health Quality Ontario 130 Bloor Street West, 10th Floor Toronto, Ontario M5S 1N5 Tel: 416-323-6868 Toll Free: 1-866-623-6868 Fax: 416-323-9261 Email: <u>EvidenceInfo@hqontario.ca</u> www.hqontario.ca

© Queen's Printer for Ontario, 2013